OCaml @ Debian

Stefano Zacchiroli
<zack@lebi an. or g>

$ whoani

e Stefano “Zack” Zacchiroli <zack@debian.org>
— http://www.bononia.it/~zack

* PhD student
- @ Computer Science Dept., Uny. of Bologna (Italy)

— proof assistants, logical frameworks, other crazy
stuff ...

* DD work, package maintainance

- MathML stuff, OCaml libraries and tools, VIM

Outline

* why learn OCaml?
— OCaml features

* packaging OCaml software
— OCaml-specific packaging issues
— a taste of OCaml packaging policy

— open 1ssues

Why Learn OCaml?

Or, When Your Current Programming Language Sucks

This part of the talk is based on the slides of Brian Hurt, available here:
http://www.bogonomicon.org/bblog/ocaml.sxi

Copyright © 2004, Brian Hurt
Copyright.© 2003, Stefano Zacchiroli

This work is licensed under the Creative Commons Share Alike License.

To view a copy of this license, visit
http://creativecommons.org/licenses/sa/1.0/
or send a letter to:

Creative Commons

559 Nathan Abbott Way

Stanford, California 94305, USA.

About OCaml

e OCaml (1.e. Objective Caml)
— general-purpose language

- type safety w/o sacrificing performance
— Very expressive, yet easy to learn and use

— supports functional, imperative, and object-
oriented programming styles

* References
— http://caml.inna.fr
— Debian binary package “ocaml”

1950

1960

1970

1980

1990

2000

OCaml pedigree

FORTRAN

LISP “ \

Algol
y C
Meta-Language
CAML le’f
OCaml
Java

OCaml is not ...

* ... ascripting language

— doesn't compete with: Perl, Shell script, TCL/TK, ...

e ... asystems language

— things not to write in OCaml:

* operating systems
— even if crazy people do exist http://dst.purevoid.org/ :-)
* device drivers

* embedded software (where space 1s a real concern)
* hard realtime systems

* anything that needs to talk directly to hardware

OCaml is ...

e ... an applications language ...
- compete with: Java, C++, C#, C (when used for apps)
e ... for writing large-scale apps

— lots of code
— lots of developer

— maintainance 1s a real concern

Executive summary

e OCaml allows you to:

— write code faster
- wpend less-time debugging
— have more maintainable code

— without sacrificing performance!

This leaves us with one question...

How?

OCaml features
(We'll explain all of them and why they're good in a bit)

— type system — 3 ways to run code
* expressive type system * interpreter
* strong static typing * byte code + VM
* type inference * native code

— pattern matching — multi-paradigm

— garbage collection * functional

~ exceptions * procedural

* object oriented
— bounds-checked arrays .

Expressive type system

e Built-in types: int, string, float, ...
* Type constructors

— tuples, records, arrays, ...
— lists

* real polymorphism: “compile once use many” vs “compile
many use once”

— variant types (AKA C on steroids)
* pattern matching (AKA C switch on steroids)
— arrow types

* higher order functions

Strong static typing

* Finding bugs at compile time cheap, debugging
code expensive (time consuming)

— Especially since type checking tells you the file and
line the bug is at

— Simply firing up a debugger and recreating the
problem takes longer than fixing a bug detected at
compile time

e OCaml gives you strong static type checking, but
without the bondage and discipline aspects.

Strong static typing

* it's not quite true the once your OCaml code
compiles, 1t's correct ... but it's surprisingly close
to being true

* OCaml detects many logic errors as type errors

— forgotten cases
— conditions not checked for
— incorrect function arguments

— violated constraints (especially with modules)
* all code gets checked
— all branches, even not taken ones

— code gets checked automatically

* compiler does checks — no extra work for the programmer

Type inference

e compiler can figure out what type a variable has
from the context

e programmer does not need to specity the types of most
variables and functions
* less typing
* clearer code (not confused by redundant type specifications)

* more likely to be correct

* compiler can even generate type annotations for those types
which need them (for the truly lazy programmer)

* this 1s considered a major advantage of run time type
checking

* and keep the benefits of static type checking!

Garbage collection

* manual memory management

— sucks! : increases complexity of code, takes large part
of development time (~ 40%), fragments heap, ...

e automatic GC 1s far better

* reference counting
— trivial to implement, widely used, ... still slow
* generational copying

— good 1dea, but Java did it wrong (long GC pauses, slow allocation)

— OCaml did it right (allocation on the average in 5 CPU cycles, no
long GC pauses)

Multi-paradigm

* OCaml 1s mainly a functional programming
language, still:

— procedural/imperative constructs are supported

— OO programming 1s supported
* interfaces
* abstract methods and classes
* multiple inheritance
* functional objects

* on-the-fly objects

Bells and whistles

* exceptions

— same basic capabilities as Java, C++, but faster

* tail calls are possible, no need to unwind the stack

* bound checking on arrays
— most checks removed at compile time
* value immutability as default

— sharing for free

Running OCaml code

e 3 different ways to run OCaml code

— 1nterpreter
* python/lisps-like read eval loop

— comptiled to bytecode + virtual machine
e portability (*NIX, Mac, M$ Win)
* small code footprint

— compiled to native executable

e performance

* available on: alpha, amd64, arm, hppa, x86, 1a64, ppc,
sparc

Nice song and dance,
but what proof do you
have?

The Computer Language
Shootout Benchmarks

e collection of micro-benchmarks written in many
different languages

— http://shootout.alioth.debian.org/
— compares LOC, run times, and memory used

— not a perfect comparison

* small benchmarks are not represenitive of large projects

e lies, damned lies, and benchmark
* I'll show you 2004 data

* results are surprising

Top fastest languages
(least CPU usage overall)

1. C (GCC) 752]
2. OCaml (native code) [751]
3. SML (mlton) 751]
4. C++ (G++) (743
5. SML (smlny) 736]
6. Common Lisp (cmucl) [734]
7. Scheme(bigloo) 730
8. OCaml (bytecode) (718]
9. Java (Blackdown/Sun) [703]
10. Pike (647]
13. Python [5778]
14. Perl (577]

15. Ruby 546

Top concise languages
(fewest lines of code overall)

1. OCaml (both) (584]
2. Ruby [582]
3. Scheme (guile) (5778
4. Python [559]
5. Pike [556]
6. Perl [556)]
7. Common Lisp (cmucl) [514]
8. Scheme (bigloo) [506]
9. Lua 492]
10. TCL (478]
11. Java (468]
16. C++ (435]
23.C [315]

Top smallest footprints
(least memory usage overall)

1. C (GCCO) 739]
2. OCaml (native code) 719
3. C++ (G++) 715
4. SML (mlton) 713]
5. OCaml (byte code) "709]
6. Forth (649
7. Python (643]
8. Lua (626
9. Perl (624]
10. Pike (611]
11. Ruby (609
27. Java (Blackdown/Sun) [290]

Packaging OCaml software

Why DDs have to care about OCaml?

e several free software projects uses OCaml

— sw you may have heard about, written 1n 1it:

* Unison (file synchronizer)

* MLdonkey (P2P client)

* ara (Debian packages database search engine)
* Active-DVI (TeX-based presenter)

* Cogqg (proof assistant)

* Debian From Scratch

* Polygen (random sentence generator)

* FreeRP (full-featured Web-based ERP)

* CDuce (XML programming language)

Why DDs have to care about OCaml?

* we need to properly handle OCaml in Debian so
that our users:

— could use applications written in OCaml

— could develop their own OCaml apps

Debian OCaml Maintainers
Task Force

* a group of DDs born to help maintainance of
OCaml related packages
* coordinate efforts on the
debian-ocaml-maint@lists.debian.org mailing list

* has an alioth project
http://pkg-ocaml-maint.alioth.debian.org/

e wrote and maintains (a draft of) the Debian OCaml
Packaging Policy

* collaboratively maintains several OCaml related debian
packages

* will be very happy to welcome your contribution :-)

OCaml distribution

 OCaml distribution ships several components

— bytecode interpreter
— 1nteractive read-eval loop

— compilers (bytecode executables)

* ocamlc (ocaml -> bytecode)

e ocamlopt (ocaml -> nativecode)
— optimized compilers (nativecode executables)

* ocamlc.opt (ocaml -> bytecode)

* ocamlopt.opt (ocaml -> nativecode)

OCaml distribution

 OCaml distribution components cont'd:

— other developers' tools (debugger, profiler, ...)
— standard library (both bytecode and nativecode
objects)

* includes X bindings which pulls in the whole xlibs
dependencies

— shared objects for C library bindings contained in the
standard library (e.g. Unix module)

OCaml Debianization

e OCaml distribution spans several binary packages

e ocaml-base{,-nox}

— bytecode interpreter

— standard hibrary stub libraries
* ocaml{,-nox}

— compilers
— developers' tools

— standard library
* ocaml-interp
— Interactive toplevel
* ocaml-native-compilers

— optimized compilers

Type safety constraints

* In order to ensure type safety

— objects (both byte and nativecode) compiled by
different version of the compiler can't be linked
together

* this 1s because OCaml has no runtime type information and
In-memory representations of data structures may change
between versions

* run-time performances have a cost!

— bytecode built with version X of the compiler can be
run only by version X of the bytecode interpreter

® same reason as above

Virtual packages

* Debian's dependencies should enforce those
constraints

e cach package of the OCaml Debianization
provides-a virtual package <package-name>-
<version>

- e.g.: ocaml-base-3.08, ocaml-3.08

Packaging OCaml apps

e Let's assume you find “Wonderful” on the web, a
GPL-ed application written in OCaml.and want to
Debianize it. You've a choice:

— create an “Architecture: all” package containing
ocaml bytecode excutables

— create an “Architecture: any” package containing
either ocaml bytecode executables or native code ones

“Arch: all” OCaml apps

* Congratulations!

— your package will be portable on all debian
architectures and wont use any buildd clock cycle

* Dependencies:

— a Dependency on ocaml-base-{nox, }-<version>

— a Build-Dependency on ocaml-{nox, }-<version>

* this dep 1s not strictly necessary for the package to be built
properly, but ensures compiler and interpreter versions to
be in sync

“Arch: all” OCaml apps

e Caveats

— 1n debian/rules you've to be sure the app you're
packaging build bytecode executables instead of
native code ones

* a widespread convention among OCaml apps 1s to use
make's “all” target (1.e. “make all”’) to build bytecode
executables and “opt” target to build native code ones

* you can verify this setting

— looking at the build log: “ocamlc” should be invoked instaed of
“ocamlopt”

— looking at the generated executables, they should start with a
#! [usr/ bi n/ ocam r un shebang line

“Arch: any” OCaml apps

* congratulations!
— your package executables will be as fast as lightning
* unfortunately ...

— OCaml native code compiler do not have backends
for all archs supported by debian — supported archs:

* alpha, amd64, arm, hppa, 1386, 1a64, powerpc, sparc

“Arch: any” OCaml apps

* byte/native code conditional building

— you've to check at package build time 1f native code
compilation 1s available

* if so build native code using ocamlopt

* if not build byecode using ocamlc

— a meaningful test 1s to verify if ocamlopt executable 1s
available on the building machine, e.g.:

bui | d- st anp:
dh_testdir
$(MAKE) al |
if [-x /usr/bin/ocam opt]; then $(MAKE) opt; else true; fi
t ouch buil d-stanmp

“Arch: any” OCaml apps

* dependencies:

* uhm ... here we've a problem: the same package should
depend on ocaml-base{,-nox} only on some arch

— those for which native compilation is not available
e “clean” solution (in our opinion): 2 binary packages

— wonderful

* architectures: all with native compilation available
* conflicts/replaces: wonderful-byte
— wonderful-byte

* architecture: all
* provides/conflicts/replaces: wonderful
* depends: ocaml-base{,-nox}

“Arch: any” OCaml apps

* sample debian/control (from “spamoracle”)

Package: spanobracle

Architecture: alpha and64 arm hppa i 386 i a64 powerpc sparc
Depends: ${shli bs: Depends}

Conflicts: spanoracl e-byte

Repl aces: spanoracl e-byte

Package: spanoracl e-byte

Architecture: all

Depends: ${shli bs: Depends}, ocani - base-nox-3.08.3
Provi des: spanoracle

Conflicts: spanoracle

Repl aces: spanoracl e

Be nice to auto-builders

* let's suppose Wonderful takes hours to build

* hey: it's a wonderful app, 1t must span several KLOC!

— 1n order to reduce the auto-builders load
ocamlc.opt/ocamlopt.opt (shipped by ocaml-native-
compilers) should be used instead of ocamlc/ocamlopt
(shipped by ocaml)

— of course ... they're not available on all arch! :-(

* ocaml-best-compilers 1s the package for you

Be nice to auto-builders

* ocaml-best-compilers

— on arch supporting native code compilation (and
hence optimized compilers) 1s provided by ocaml-
native-compilers

— on other archs 1s provided by ocaml-nox

- bug: ATM ocaml-best-compilers 1s not versioned

* thus you should build depend on both 1t and ocaml{,-nox }-
<version> to ensure compiler/interpreter compatibility

* this will change in the near future

Packaging OCaml libs

* let's assume now that next version of
“Wonderful” depends on an OCaml library
“Wow’ ... of course not yet Debianized

- you, skilled DD, decide to package it for Debian!

— two scenarios have to be considered

* Wow is a pure OCaml library

* Wow 1s a mixed C/OCaml library
— e.g. OCaml binding for a C library

Pure OCaml libs

* just create a “libwow-ocaml-dev” binary package

— 1nstalling everything in a directory just below the
Debian OCaml standard library directory: /
usr/lib/ocaml/<version>

* ¢.g. /usr/lib/ocaml/3.08/wow/

* follow the same advice on byte/native code
conditional building we already discussed

® caveats (as

Pure OCaml libs

usual):

— on arch not supporting native code compilation only

bytecode
installed)
nativecoc

— usually u

objects will be generated (and should be
while on other archs both byte and
e will

pstream's make “install” 1s smart enough to

decide what to install

* otherwise you can use the following rule of thumb to
decide what should be 1nstalled

- bytecode objects: *.cmi, *.cmo, *.cma

— nativecode objects: *.cmx, *.cmxa, *.a, *.0

Mixed C/OCaml libs

* both byte and native OCaml code can be linked
with C code

— bindings of existing C libraries
- 1mplementation of C-specific parts (e.g. hw 1/O)
* kinds of linking with C code:

— static linking
* no run-time dependencies / non-portable executables
— dynamic linking (since OCaml 3.03)

* run-time dependencies / portable (bytecode) executables

Mixed C/OCaml libs

* dynamic linking of C code requires a .so (usually
named dll<libname>.so) that must be available at
runtime

* in order to be found by the ocaml interpreter .so s
must be located in the stublibs/ sub-directory of
the ocaml standard library directory

- e.g. /usr/lib/ocaml/3.08/stublibs/dllwow.so

Mixed C/OCaml libs

e packages shipping mixed C/OCaml libs should
thus be split as follows

— libwow-ocaml

e runtime part of the library, basically the .so

* depends: ocaml-base{,-nox}
- libwow-ocaml-dev

* development part of the library, basically everything else

* depends: ocaml{,-nox }

— other details 1n the sample ...

Mixed C/OCaml libs

e sample debian/rules (from “libzip-ocaml{,-dev}”)

Package: |ibzi p-ocani
Depends: ocanl - base- nox-3.08. 3, ${shlibs: Depends}

Package: | i bzi p-ocanl -dev
Depends: ocanml -nox-3.08. 3, zliblg-dev (>> 1.1.4),
| i bzi p-ocam (= ${Source-Version})

OCaml libs dependencies

* on-library and inter-library deps represent a
challenge for the Debian deps management

— 1n order to preserve type-safety OCaml objects
linking an external library includes mdSsums of their
modules interfaces

— each change to interfaces (no matter 1if 1t 1s only an
adjunct or not) will make for link time incompatibility

* run-time performances have a cost!

Link time incompatibility

— example:

* libwow-ocaml-dev 1.0 ships WowBasic interface with
mdSsum X

* liburka-ocaml-dev 1.0 is built against WowBasic and
internally stores X mdSsum for it

* libwow-ocaml-dev 1.1 1s released and changes WowBasic
mdSsum to Y

* linking an app against libwow 1.1 and liburka 1.0 will fail
with an error message like

— The files afile.cmi and anotherfile.cmi make inconsistent
assumptions over interface WowBasic

OCaml libs dependencies

* analysis
— Debian versioned dependencies are not enough

* we need to express constraints like “depends on a version

of ibwow-ocaml-dev whose md5sums are thatO, thatl, and
that2”

— current solution

* depends and build-depends on libwow-ocaml-dev >= x.y.z
where x.y.z 1s the least version known to ship the right
interface

* each time an interface change, its maintainer inform
maintainers of all depending packages asking rebuilding
and dependencies fix :-(

OCaml libs dependencies

e jssues with the current solution

1.dependencies must be manually filled and bumped

2.packages should be manually rebuilt each time an
interface mdSsum change
* this happens quite often ...

e ... and can be really painful on packages which are at the
bottom of the dependency graph

* let's have a look at the dependency graph ...

(Part of)

the OCaml packages build-dep graph

' ocaml-http "
_‘ !

— i——— = =

—

regexp-pp ocamlnet ulex

netc lient

ik

S = all(CEOINNO)

e cach time pcre-ocaml releases you can hear ocaml
maintainers screaming!

OCaml libs dependencies

e Etch solution

— dh_ocaml

* anew debhelper

* maintains an “OCaml mdSsums registry’” of all installed
OCaml interfaces with information on owner package and
1ts version

* given a set of OCaml objects extract from them
information on which md5sums they need and, looking up
the registry, compute package dependencies

* create postinst/prerm scripts for registry book-keeping

OCaml libs dependencies

e the Etch solution

— addresses 1ssue 1. (manually filling of dependencies)

— does not address 1ssue 2. (manual rebuilding of
depending packages)

e ... feel free to suggest any (good) 1dea

The End.

