
Fixing autotools-related
build issues

Debian QA Meeting
Darmstadt, 9-11 September 2005

Sam Hocevar <sam@zoy.org>

What are the autotools?

● They provide an easy way to do this:
– ./bootstrap
– ./configure
– make

● But it also becomes easy to do this:
– configure.ac: error: possibly undefined macr
– Makefile.am: TRUE does not appear in AM_COND
– libtool: link: `0:1:2' is not valid version

How do they work?
● Upstream writes configure.ac

– Contains checks for libraries, headers,
compiler and platform features

– Is used to generate configure

● Upstream writes Makefile.am
– Contains build rules for all project targets

– Is used to generate Makefile.in
– Which will be used to generate Makefile

● Upstream bootstraps project and
distributes this bootstrapped version

configure.ac example
AC_INIT(main.c)
AC_CONFIG_AUX_DIR(autotools)
AM_INIT_AUTOMAKE(myproject, 1.0)
AM_CONFIG_HEADER(config.h)
AC_CHECK_FUNCS(getopt_long)
AC_CHECK_HEADERS(sys/soundcard.h)
AC_CHECK_LIB(resolv, inet_pton)
AC_TRY_COMPILE(
 [asm volatile(“vperm 0,1,2,3”);])
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Makefile.am example
Define our targets
bin_PROGRAMS = myprog

Configure our targets
myprog_SOURCES = main.c main.h defines.h
myprog_CFLAGS = -O6 -funroll-loops\
 -faggressive-gentoo-optims \
 -fpimp-my-bike
myprog_LDFLAGS = -lm -lcrypt -lpthread

That’s all!

main.c example

#include “config.h”

#ifdef HAVE_SOUNDCARD_H
#include <sys/soundcard.h>
#endif
#ifndef HAVE_LIBRESOLV
int inet_pton(void) { return 2; };
#endif

int main(void) { return 0x2A; }

The bootstrap process

The bootstrap cruft

But...

● Aren’t the autotools...
– Slow?
– Bloated?
– Constantly causing FTBFS errors?
– Easily replaced with more powerful tools?

– Totally outdated 20th century technology?
– Unmaintainable because they use Perl?
– The #1 cause for hair loss amongst Debian

developers?

Yes, probably!

● But let’s troll about
it later, shall we?

Debian packaging integration

● Totally straightforward
– Upstream tarball includes all files resulting

from the bootstrap process (config.guess,
config.sub, install-sh, ltmain.sh...)

– debian/rules calls ./configure
– debian/rules calls make

● You don’t have anything to do!
● ... or do you?

Something that does not cause
build errors but may give you

bad surprises in the future
● Packages that call ./configure without

any arguments
● This is very likely a bug in the package

– Often prevents the package from building if
you do not use dpkg-buildpackage

– Cause of headache when cross-compiling

● Read autotools-dev’s README.Debian.gz

– “Calling GNU configure properly”

How you should do it
export DEB_HOST_GNU_TYPE ?= \
 $(shell dpkg-architecture -qDEB_HOST_GNU_TYPE)
export DEB_BUILD_GNU_TYPE ?= \
 $(shell dpkg-architecture -qDEB_BUILD_GNU_TYPE)

ifeq ($(DEB_BUILD_GNU_TYPE), $(DEB_HOST_GNU_TYPE))
 confflags += --build $(DEB_HOST_GNU_TYPE)
else
 confflags += --build $(DEB_BUILD_GNU_TYPE) \
 –-host $(DEB_HOST_GNU_TYPE)
endif

./configure $(confflags) –-blahblah --otherflags

All is not so nice

● Even a flawlessly autotool’ed package
can cause problems
– Can have been bootstrapped with a buggy

version of libtool
– A package bootstrapped in 2001 can not

know about an architecture from 2005

● Sometimes the maintainer is at fault
– debian/rules runs a bootstrap process

– debian/rules or diff.gz blindly patch random
autotools files

Common build problems (1)

● ./configure fails to detect architecture

● Likely reason:
– config.guess and config.sub are outdated

● Possible ways to solve:
– Run the bootstrap process and rebuild

– Run the bootstrap process in debian/rules
– Copy the build system’s versions of
config.guess and config.sub at configure time

Common build problems (2)

● Libraries are not linked with the right
libraries, with the right linker (gcc/g++) or
have an incorrect rpath

● Likely reason:
– Package was generated with a buggy libtool

● Possible ways to solve:
– Run the bootstrap process and rebuild

– Run the bootstrap process in debian/rules

Bootstrapping in debian/rules

● It is ugly. Don’t do it.
– You will need to build-

depend on the proper
version of each tool

– The clean rule will be a
nightmare to write

– It creates useless build-
dependencies

– Unless you really know
what you are doing, you
will simply get it wrong

Bootstrap and ship in diff.gz

● Has a few drawbacks
– Often creates a huge diff
– You will need to take care of timestamps
– Bugs in the autotools are not automatically

fixed

● But it’s probably the less ugly solution
– Does not require insane build-depends
– You know exactly what is in the autotools

files whatever the build environment

How to properly bootstrap

● Order matters, get it wrong and regret it
– libtoolize
– aclocal
– autoconf, autoheader
– automake

● Versions matter, too
– aclocal-1.4, automake-1.4, automake-1.9...
– autoconf is tricky

● Remove the cruft before!

Common build problems (3)
● Build calls automake or autoconf despite
debian/rules making no direct call to it

● Likely reason:
– diff.gz (or dpatch et al.) fiddled with

autotools files and changed their timestamps

● Possible ways to solve:
– Fix timestamps in debian/rules
– Build-depend on autoconf, automake... NO!
– AM_MAINTAINER_MODE

Easy fix for the timestamp issue

Fix timestamps in autotools files
 touch configure.ac \
 && touch aclocal.m4 \
 && touch configure \
 && touch config.h.in \
 && find . -name Makefile.in \
 -exec touch '{}' ';'
Configure project
 ./configure $(confflags) ...

AM_MAINTAINER_MODE
● Just add this line to configure.ac

– It tells the autotools not to try to regenerate
temporary files

● Bootstrap and
be done with it!

It is your job to tell upstream

● The sooner you educate
upstream about it, the
sooner you can get rid of
the ugliness
– Tell them about

AM_MAINTAINER_MODE
– Tell them to use recent

autotools
– Tell them the Debian

versions make better, more
portable packages

Any questions?

