
Weeding out se
urity bugs in DebianJavier Fernández-Sanguino PeñaMay 18, 20061 How do se
urity bugs a�e
t the Debian proje
tThe Debian proje
t asserts that it provides a high-quality distribution (DebianGNU/Linux) with a release 
y
le that is not for
ed upon by marketing require-ments and, 
onsequently, makes it possible to provide a distribution withoutimportant (i.e. release 
riti
al) defe
ts.However, on
e a release is done, any se
urity bug a�e
ting a software pa
kagethat is part of the release has many dire
t 
onsequen
es:
• our users' systems are immediately in danger of being 
ompromised dueto the se
urity bugs (this will depend on the nature of the bug itself, andwhether it's a lo
al or remote exploitable bug)
• our se
urity team needs to deal with the se
urity bug in order to providea new �xed software pa
kage ba
kporting, or writing themselves, a pat
h�xing the se
urity bugs
• when the �x is developed our buildd infrastru
ture needs to handle the �xand generate new pa
kages in short time
• when an advisory is sent, after a new pa
kage version is available with the�x in our se
urity servers, our se
urity support infrastru
ture (bandwidthand servi
es) has to 
ope with hundreds of users downloading the newversion of the pa
kage to install the upgrade
• even if the se
urity bug is �xed, there is always the possibility that the�x or the 
hanges in the pa
kage introdu
e new bugs that will a�e
t ourusers (even though they may not be se
urity related)If any of these steps fail and, 
onsequently, the �window of exposure� (time ittakes from a se
urity vulnerability to be known to a pat
h be available by us)in
reases then this impa
ts negatively in the proje
t, new sites will pi
k this upand it will be
ome bad publi
ity.Se
urity bugs have a negative impa
t even if the our pat
hing pro
ess worksout �awlessly: we are able to produ
e pat
hes in time for all our supportedar
hite
tures (or even before the vulnerability is publi
ly known) and there areno hi

ups with any of our infrastru
ture. When doing a review of the numberof se
urity bugs found for a given release, reviewers might �nd that the releasepro
ess has not been adequate if the bugs found after the release is too high.Indeed, our release pro
ess was designed partly to �nd (and �x) these kind of1



bugs, if there are too many advisories published after a release then that mightbe an indi
ation that there is a �aw in our release pro
ess.There is also the issue of quantity, regardless of the previous issues, an in-
reasing number of se
urity bugs require an in
reasing number of resour
es fromthe Debian proje
t. These resour
es in
rease: CPU (in di�erent ar
hite
tures todrive the se
urity buildds), bandwidth (for the download of the pat
hes), and,most important, human (the people that have to develop the pat
h, test it andwrite the advisory).2 Se
urity issues in the Debian distributionThe Debian Se
urity Team has issued (sin
e 2001 and up to April the 5th 2006)1047 advisories for 1387 distin
t vulnerabilities. Of these, over 65% have beenrelated to remote vulnerabilities. This is not ne
essarily the real distributionof vulnerabilies of the di�erent releases the proje
t, it is the number of vulner-abilities that the proje
t has issued advisories for.This is the list of 
lasses of se
urity bugs found in Debian pa
kages1 as wellas the per
entage of vulnerabilities �xed in issued advisories:bu�er over�ows the input being re
eived by a system, be it human or ma-
hine generated, 
auses the system to ex
eed an assumed boundary. Thismight be 
onsidered a subset of improper data handling, but the largenumber of appli
ations and the 
onsequen
es of this bug (
ode exe
ution)justify it being 
onsidered a di�erent 
lass of bug (almost 27% of se
urityvulnerabilities);improper data input handling the input being re
eived by a system is notproperly 
he
ked su
h that a vulnerability is present that 
an be exploitedby a 
ertain input sequen
e. This issue leads to many type of di�erentatta
ks, su
h as 
ross-site s
ripting in web appli
ations, or SQL inje
tion(almost 25% of se
urity vulnerabilities);design errors when there does not exists errors in the implementation or 
on-�guration of a system, but the initial design 
auses a vulnerability to exist(18,7%);boundary 
ondition error the input being re
eived by a system, be it humanor ma
hine generated, 
auses the system to ex
eed an assumed boundary.It is also a subset of input validation (7%);ex
eptional 
ondition handling handling (or mishandling) of the ex
eptionby the system that enables a vulnerability (6,5%);a

ess validation error the a

ess 
ontrol me
hanism is faulty (4,7%);ra
e 
onditions the non-atomi
ity of a se
urity 
he
k 
auses the existen
e ofa vulnerability (2,6%);1It is based on the published DSAs 
rossed with the information available in the NationalVulnerability Database http://nvd.nist.gov/ (NVD, formerly ICAT) based on the CVEname of vulnerabilities. 2




on�guration error user 
ontrollable settings in a system are set su
h thatthe system is vulnerable (2,4%);environmental error: the environment in whi
h a system is installed somehow
auses the system to be vulnerable (0,9%).All these bugs are, in themselves, defe
ts in the software itself. An appli
ationthat fails to validate input2 
oming from untrusted users3 might introdu
e a se-
urity vulnerability whi
h 
an range from a bu�er over�ow remotely exploitablein a server daemon to a SQL inje
tion error in a web-driven appli
ation.The following is the number of advisories (and vulnerabilities) for the di�er-ent distributions Debian has released4:
• 197 advisories for 256 vulnerabilities were published for Debian 2.2 (potato)whi
h was in se
urity maintenan
e for 2.79 years. There are 59 millionlines of sour
e 
ode in this release;
• 690 advisories for 1070 vulnerabilities have been published for Debian 3.0(woody) whi
h has been in se
urity maintenan
e for 3.7 years. There are105 million lines of sour
e 
ode in this release;
• 271 advisories 570 vulnerabilities have been published for Debian 3.1(sarge) in less than a year. This release has 216 million lines of sour
e
ode.Nobody will be surprised when told that the number of se
urity vulnerabilities(and, 
onsequently, advisories) published for an operating system is very depen-dant on the amount of software it in
ludes, more software means more bugs.A re
ent analysis by Coverity5, a 
ompany that provides a 
losed-sour
e sour
e
ode audit software, shows an average of 0.3 defe
ts per thousand lines of 
odefor some of the most popular and used FLOSS proje
ts. Not all of these defe
tsmight be exploitable se
urity bugs, but the more the distribution grows6 themore se
urity bugs it will hold.It is important for Debian developers to know and understand the di�erenttypes of vulnerabilities as well as to know what they 
ould have done to preventa programming bug to be
ome a se
urity issue. This in
ludes: designing serversso that they properly implement privilege separation instead of running as root,avoiding the use of setuid or setgid binaries and providing good installationdefaults su
h as not starting up a servi
e if it is not properly 
on�gured orlimiting a

ess to an appli
ation to only the server it is installed on.2For more information see the �Validate All Input� se
tion of the David Wheeler's Se
ureProgramming for Linux and Unix HOWTO http://www.dwheeler.
om/se
ure-programs/Se
ure-Programs-HOWTO/input.html.3In these 
ase they 
an be either remote users, for daemons, or lo
al users for setuid/setgidappli
ations.4I have also in
lude the size of the distribution in millions lines of sour
e 
ode based on theLibre software engineering (Libresoft) resear
h group from the Universidad Rey Juan Carlos,as detailed in Debian Counting http://libresoft.dat.es
et.urj
.es/debian-
ounting/.5For more information see Automating and A

elerating Open Sour
e Quality http://s
an.
overity.
om/, an analysis of thirty open sour
e proje
ts in
luding the Linux kernel,g

, FreeBSD, NetBSD, Apa
he, Samba, Perl, Firefox and GNOME. LWN 
overage (withinteresting dis
ussion) is at http://lwn.net/Arti
les/174426/6And based on Libresoft's data it is 
urrently doubling its size every two years!3



3 Work of the Debian se
urity audit teamThe Debian Se
urity Audit Team http://www.debian.org/se
urity/audit/started working in 2004 to fo
us work on auditing Debian pa
kages for se
urityissues. It has been dire
tly responsible of 82 Debian Se
urity Advisories andhas opened up 122 se
urity-related bugs in the BTS (up to mar
h 2006).The Audit Team is 
omposed of loosely 
oordinated group of people. Al-though they use a publi
 mailing list, more of the audit work is �hidden� andis not even dis
ussed on list until an advisory is published. Currently, the dif-ferent members of the Audit Team fo
us on one spe
i�
 type of bug and worktheir way through the pa
kage sour
es in order to �nd instan
es of that type ofse
urity bug.One of the goals of the Audit Team is to have se
urity bugs �xed in thedistribution before they are really an issue (i.e. before the a�e
ted pa
kageversions are released).O

asionally, members of the team also review se
urity bugs and advisoriesfrom other distributions and make sure that the Debian pa
kage that providesthe same software is �xed in Debian too. At times, this overlaps with the workalready done by the Stable and Testing Se
urity Teams but it often means thatthere are more �eyes� looking for (known) se
urity bugs that might be presentin the software we distribution.These are some of the lessons learned by the team:
• many developers are not aware of the 
onsequen
es of some se
urity bugsand need to be shown that a se
urity bug is of higher severity;
• even though some bugs have been found and reported, there are manymore se
urity bugs present waiting to be removed. This spe
ially appliesto software that is not too popular (
onsequently, not many people arelooking for bugs in it) or se
urity type of bugs that are not being oftenreviewed;
• there is too mu
h software in the distribution and auditing resour
es ares
ar
e;
• the available free software tools for sour
e 
ode review are insu�
ient forthe task at hand;
• it takes quite some time to �x se
urity bugs. Spe
ially se
urity bugswhi
h are not highly 
riti
al (su
h as temporary �le vulnerabilities). Thisis related to the limited resour
es of the Debian Se
urity team but it alsohappens be
ause of maintainers being unresponsive.4 How 
an a developer improve se
urity in theDebian OSWhen you are pa
kaging software for other users you should make a best e�ortto ensure that the installation of the software, or its use, does not introdu
ese
urity risks to either the system it is installed on or its users.You should make your best to review the sour
e 
ode of the pa
kage and de-te
t issues that might introdu
e se
urity bugs before the software is released4



with the distribution. The programming bugs whi
h lead to se
urity bugstypi
ally in
lude: bu�er over�ows http://en.wikipedia.org/wiki/Buffer_overflow, format string over�ows, heap over�ows, integer over�ows (in C/C++programs), and temporary symlink ra
e 
onditions http://en.wikipedia.org/wiki/Symlink_ra
e(very 
ommon in Shell s
ripts).Some of these issues might not be easy to spot unless you are an expert inthe programming language the program uses, but some se
urity problems areeasy to dete
t and �x. For example, �nding temporary ra
e 
onditions in sour
e
ode 
an easily be done by just running grep -r "/tmp/" . in the sour
e 
odeand repla
e hard 
oded �lenames using temporary dire
tories to 
alls to eithermktemp or temp�le in Shell s
ripts, or File::Temp in Perl s
ripts, and tmp�lein C/C++ 
ode. You 
an also use sour
e 
ode audit tools 7 to assist to these
urity 
ode review phase.When pa
kaging software make sure that:
• It is not alpha or beta software, if it is, prevent it from going into testing(by introdu
ing an RC bug for it). If it's not ready for release, don't letit be released.
• The software runs with the minimum privileges it needs. That is:1. the pa
kage does not install binaries setuid or setgid8;2. if the pa
kage provides a servi
e, the daemons installed should run as alow privileged user, not as root.
• Programmed periodi
 tasks (i.e., 
ronjobs) installed in the system do notrun as root or, if they do, do not implement 
omplex tasks.
• The default 
on�guration is sane and limits exposure. Don't think thateverybody will install the software in a development enviroment and needsall the bells and whistles the program might provide.If you are pa
kaging software that has to run with root privileges or intro-du
es tasks that run as root, make really sure it has been audited for se
u-rity bugs upstream. If you are not sure about the software you are pa
kag-ing, or need help, you 
an 
onta
t the Debian Se
urity Audit team and askfor a review. In the 
ase of setuid/setgid binaries, you must follow the De-bian poli
y se
tion on permissions and owners http://www.debian.org/do
/debian-poli
y/
h-files.html#s10.9.On
e your software has been released, make sure that you tra
k se
uritybugs a�e
ting your pa
kages either through upstream mailing lists or throughse
urity mailing lists. If a se
urity bug is dete
ted that a�e
ts your pa
kage youmust follow the Handling se
urity-related bugs http://www.debian.org/do
/manuals/developers-referen
e/
h-pkgs.en.html#s-bug-se
urityguidelinesin the Developer's referen
e. Basi
ally this boils down to 
onta
ting the se
urityteam to let them know, and help produ
e (and test) pat
hes for the softwareversions released.Finally, invest time in reading about se
urity bugs and how to prevent them.David Wheeler's Se
ure Programming for Linux and Unix HOWTO http://7More information available at http://www.debian.org/se
urity/audit/tools8Lintian will warn of setuid, setgid binaries in the pa
kage5



www.dwheeler.
om/se
ure-programs/Se
ure-Programs-HOWTO/index.html shouldbe a must read, it is an online book freely available pa
ked full of valuable 
on-tent. For developers that pa
kage web-based appli
ations, the OWASP Guidehttp://www.owasp.org/do
umentation/guide.html is also a must read. Otherre
ommended reading would be Se
ure Coding: Prin
iples |& Pra
ti
es http://www.se
ure
oding.org , by Mark G. Gra� and Kenneth R.Van Wyk (ISBN0596002424)5 Con
lusionThe 
onstant growth of the distribution makes it inevitable that a large num-ber of unfound se
urity issues are present in ea
h release. Se
urity bugs drainimportant resour
es from the proje
t but developers have it in their own handsto improve the situation by making sure they provide releasable software andthey prevent software that might not be releasable (unaudited, alpha or betasoftware) from getting into the distribution.on.Se
urity safeguards might be introdu
ed in the distribution, su
h as sta
kover�ow prevention measures (as implemented in OpenBSD or Adamantix) orMandatory A

ess Control me
hanisms (su
h as SElinux). But these safeguardswill only prote
t our users against spe
i�
 set of atta
ks, users 
annot (andshould not) rely on them to prote
t their systems against every possible instan
eof se
urity bugs.Also, unfortunately, due to the 
urrent status of automati
 sour
e 
ode audittools it is not possible, for the moment, to design or provide something akin tolintian.debian.org to warn Debian developers (and users) of possible se
uritybugs in Debian pa
kages. We are 
urrently missing metri
s to evaluate thequality (se
urity-wise) of Debian pa
kages (and the software they in
lude) toboth dete
t and make de
isions about software distributed within Debian.That makes developer awareness on information se
urity issues somethingeven more important if we want to be su

essful in providing a high-qualityuniversal operating system.

6


